博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
pytorch加载和保存模型
阅读量:5128 次
发布时间:2019-06-13

本文共 1544 字,大约阅读时间需要 5 分钟。

在模型完成训练后,我们需要将训练好的模型保存为一个文件供测试使用,或者因为一些原因我们需要继续之前的状态训练之前保存的模型,那么如何在PyTorch中保存和恢复模型呢?

方法一(推荐):

第一种方法也是官方推荐的方法,只保存和恢复模型中的参数。

保存    

torch.save(the_model.state_dict(), PATH)

恢复

the_model = TheModelClass(*args, **kwargs)
the_model.load_state_dict(torch.load(PATH))

使用这种方法,我们需要自己导入模型的结构信息。

方法二:

使用这种方法,将会保存模型的参数和结构信息。

保存

torch.save(the_model, PATH)

恢复

the_model = torch.load(PATH)

一个相对完整的例子

saving

torch.save({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'best_prec1': best_prec1,
}, 'checkpoint.tar' )

loading

if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
best_prec1 = checkpoint['best_prec1']
model.load_state_dict(checkpoint['state_dict'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.evaluate, checkpoint['epoch']))
 

获取模型中某些层的参数

对于恢复的模型,如果我们想查看某些层的参数,可以:

# 定义一个网络
from collections import OrderedDict
model = nn.Sequential(OrderedDict([
('conv1', nn.Conv2d(1,20,5)),
('relu1', nn.ReLU()),
('conv2', nn.Conv2d(20,64,5)),
('relu2', nn.ReLU())
]))
# 打印网络的结构
print(model)
 
OUT:
Sequential (
(conv1): Conv2d(1, 20, kernel_size=(5, 5), stride=(1, 1))
(relu1): ReLU ()
(conv2): Conv2d(20, 64, kernel_size=(5, 5), stride=(1, 1))
(relu2): ReLU ()
)
 
如果我们想获取conv1的weight和bias:
 
params=model.state_dict()
for k,v in params.items():
print(k) #打印网络中的变量名
print(params['conv1.weight']) #打印conv1的weight
print(params['conv1.bias']) #打印conv1的bias
 
 

转载于:https://www.cnblogs.com/nkh222/p/7656623.html

你可能感兴趣的文章
Date Picker控件:
查看>>
你的第一个Django程序
查看>>
grafana授权公司内部邮箱登录 ldap配置
查看>>
treegrid.bootstrap使用说明
查看>>
[Docker]Docker拉取,上传镜像到Harbor仓库
查看>>
javascript 浏览器类型检测
查看>>
nginx 不带www到www域名的重定向
查看>>
记录:Android中StackOverflow的问题
查看>>
导航,头部,CSS基础
查看>>
[草稿]挂载新硬盘
查看>>
[USACO 2017 Feb Gold] Tutorial
查看>>
关于mysql中GROUP_CONCAT函数的使用
查看>>
OD使用教程20 - 调试篇20
查看>>
Java虚拟机(JVM)默认字符集详解
查看>>
Java Servlet 过滤器与 springmvc 拦截器的区别?
查看>>
(tmp >> 8) & 0xff;
查看>>
linux命令之ifconfig详细解释
查看>>
NAT地址转换
查看>>
Nhibernate 过长的字符串报错 dehydration property
查看>>
Deque - leetcode 【双端队列】
查看>>